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Summary--This paper deals with the effects of initial geometric imperfections and in-plane boundary 
conditions on the large-amplitude vibration behavior of angle- and cross-ply rectangular thin plates. 
It is found that the presence of imperfection amplitudes of the order of only half the total laminated- 
plate thickness may significantly raise the vibration frequencies and change the large-amplitude 
vibration behavior from the well-known hard-spring to soft-spring behavior. The effects of fibre 
angles and bending-stretching coupling for angle-ply plates and Young's moduli ratios and number 
of layers for antisymmetric cross-ply plates are examined. 

1. INTRODUCTION 

Large-amplitude vibrations of composite plates has been a topic which has attracted 
considerable attention over the past 15 years. This topic has become increasingly important 
today due to its widespread applications in mechanical, aerospace and ocean-engineering 
structural configurations. Subsequent to the early papers on the effects of bending-stretching 
coupling of composite plates (Reissner and Stavsky [ 1 ]; Ambartsumyan [2]), large amplitude 
vibrations of anti-symmetric angle-ply plates were first investigated by Bennett [3]. The 
analysis was further examined by Bert [4] and Chandra and Basava Raju [5]. Large- 
amplitude vibrations of anti-symmetric cross-ply plates were analysed by Chandra et al. 

[6, 7]. Moreover, the effects of shear and rotatory inertia on large amplitude vibrations of 
plates were examined by Wu and Vinson [8], Sathyamoorthy and Chia [9-10] and Celep 
[ 11 ] and a comparison of new composite-plate theories was presented by Bert [12]. Further 
results using the finite-element method were obtained by Reddy and Chao [13]. The above 
papers are by no means exhaustive and excellent reviews on these problems were written by 
Chia [14], Bert [15] and Leissa [16]. 

On the other hand, attempts were also made to investigate the effects of geometric 
imperfections on the linear and nonlinear vibration behavior of isotropic homogeneous 
rectangular plates (Celep [ 11 ], Yamaki and Chiba [ 17] and Hui [ 18]). Further research on 
the effects of geometric imperfections on the large-amplitude vibrations of simply supported 
and clamped circular plates [19], simply supported cylindrical panels with in-plane 
constraints [20], almost simply supported circular cylindrical shells [21] and shallow 
spherical shells [22] were examined. All the above investigations deal with isotropic 
homogeneous materials. It appears that the present paper is the first attempt to study the 
effects of geometric imperfections on large-amplitude vibrations of composite plates which 
may exhibit bending-stretching coupling. Further studies on their effects on composite 
cylindrical shells or cylindrical panels will be presented in separate papers. 

The present paper aims to study the effects of geometric imperfections and in-plane 
constraints on the linear as well as nonlinear vibration behavior of clamped angle- and cross- 
ply rectangular thin plates. The analysis is based on a solution of the dynamic analogue ofvon 
K~irm~in differential equations valid for moderately large deflections. The imperfection shape 
is chosen to be the same as the vibration mode and only the results for the fundamental mode 
are presented even though the analysis is also applicable to the non-fundamental modes. It is 
found that the presence of imperfection amplitude of only half the plate thickness may 
significantly raise the linear vibration frequencies and change the inherent hard-spring 
character of composite plates to that of soft-spring behavior. The effects of fibre angles and 
number of layers for angle-ply rectangular plates and Young's modulus ratios and number of 
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layers for graphite--epoxy, glass-epoxy and boron-epoxy cross-ply plates (which are likely to 
be encountered in practice [14, 23-26]) are examined. In passing, the effects of geometric 
imperfections on the linear frequencies of angle-ply rectangular plates with pre-load can be 
found in a separate paper [25]. 

The linear and nonlinear vibration behavior of the anti-symmetric angle-ply rectangular 
(square or non-square) plates are independent of the sign of the imperfection amplitude since 
from the physical point of view, such a sign change represents the same structure. The same 
remark on the sign independence of the imperfection amplitude can be made on vibrations of 
anti-symmetric cross-ply square plates. However, for non-square rectangular anti-symmetric 
cross-ply plates, the vibration problem may depend on the sign of the imperfection amplitude 
since a careful physical examination will show that such a sign change represents a different 
structure [26]. (Note that ref. [26] deals with buckling and postbuckling but not vibration.) 

Of the numerous papers which deal with large-amplitude vibrations of laminated perfect 
plates (with no geometric imperfection) mentioned in Chia's book [ 14] and in review articles 
by Bert [15] and Leissa [16], All of them predicted hard-spring behavior. Some of them even 
employed highly accurate shell theory which includes transverse shear and rotary inertia, 
incorporating the effects of irregular boundary and variable thickness. This paper is the first 
in the open literature to point out that if these laminated structures were actually tested in the 
laboratory or in full-scale testing, it is possible that one may encounter soft-spring vibration 
behavior. This is because unavoidable geometric imperfections of the order of half the plate 
thickness are usually present due to manufacturing or other difficulties. 

2. G O V E R N I N G  D I F F E R E N T I A L  E Q U A T I O N S  A N D  B O U N D A R Y  C O N D I T I O N S  

The Von K~irm~in type nonlinear dynamic equilibrium and compatibility equations for a laminated thin plate 
written in terms of an out-of-plane displacement W and a stress function F valid for moderately large deflection are, 
respectively, (Stavsky and Hoff [27], Tennyson et al. [28, 29] and Chia [14]). 

Lo.(W) + LB. (F) + p W . -  Q(X, Y,Y) 
= F,~(W+ Wo),xx + F,xx(  W+ Wo),~- 2F,xy(W+ Wo),xy (1) 

LA*(F) - LB*(W) = (W, xy)  2 + 2Wo, xyW, x y  - (W-'l- Wo),x x W, yy--  WO, yyW, x X. (2) 

In the above, p is the mass of the plate per unit area,¥is time, X and Y are the in-plane coordinates, Q(X, Y,,T) i's the 
forcing function, Wo (X, Y) is the initial geometric imperfection and the linear differential operators LA. ( ), L~. ( ) 
and Lo.( ) are defined in ref. [28] by setting the radius of the cylindrical shell to infinity. The strains and moments 
are related to the stresses and curvatures by 

B* 
[Ex, Er, y,,r, Mx, My, M~,y]T f [ a * ]  [ ° ] J I N x  Ny, N x y , - W x x , - W . . y y , - 2 W x y ]  T (3) 

=L[- s~ ]  [o~]J ' 

[ A , A = [ A , A - '  * = • , [B,/] - [Aii ] - '  [ B J ,  [O*] = [D,j] - [B,./] [A,j] ' [Bii], (4) 

where [Aii], [Bii], [Di;], [Ai'~] and [D*]  are symmetric matrices and in general, [B*]  is not a symmetric matrix. 
Introducing the non-dimensional quantities a*, b*, d*, w, Wo, f, x, y, t and q defined by, 

(a,j, b,j, d*) = (Eha*q, B* /h, D* /(EhS)) 

(w, Wo) = (W/h, Wo/h), f =  f /(Eh3), 

(x, y) = (X/B, Y/B), t =¥co,, (5) 

q(x, y, t) = (Eh*Tt*/B'*)Q(X, E t  ), (co,)2 = Eh31t*/(pB,*), 

where h is the total thickness of the laminated plate, to, is the reference frequency, B is the width of  the plate and E is a 
quantity which has unit force per square length (the choice for E usually depends on the unit used in the possibly 
given Air,* B o,* D~ coefficients), one obtains, 

Ld,(W) + L b , ( f )  + ~4 •,|t -- /['4q( x '  Y' t) 

= frr(w + Wo).x x +fxx(W + Wo).rr - 2fxy( w + Wo).xy (6) 

L a , ( f  ) - Lb*(W ) = (w + 2Wo),xrwxy -- (w + Wo).xxWrr -- No. ~c..w .... (7) 

For angle-ply plates, the non-dimensional linear operators are defined to be [25], 

La*( )=a~2(  ) . . . . .  +(2a*2+a*6)( ),xxrr+a*l( ) ..... (8) 

La.( ) = d * , (  ) . . . . .  +(2)(d*2+2d*6)( ),xxyr+d*2( ),ryrr (9) 

Lb'( ) = ( 2 b * 6 - b ~ ) (  ) . . . . .  +(2b*6-b~2)(  ) ...... ' (10) 

For cross-ply plates, the La*( ) and Ld.( ) operators are identical to that for angle-ply plates while the 
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bending-stretching linear operator Lb*( ) is replaced by L#,( ), where [26], 

L~.( ) = b ' t (  ) . . . . .  + ( b * l + b * z - 2 b * 6 ) (  ),xx~,y+b*2( ).,yyy. 

For anti-symmetric angle-ply plates, one obtains 

At6 =- A26 = Bit  = BI2 = B22 = B66 = DI6 = D26 = 0 

while for anti-symmetric cross-ply plates, 

At6 = A26 = BI6 = B26 = DI6 = D26 = 0. 

(11) 

(12) 

(13) 

3. S I M P L Y  S U P P O R T E D  I M P E R F E C T  A N G L E - P L Y  P L A T E S  

In a one-mode approximate analysis, the vibration mode which satisfies the simply supported boundary 
conditions (w --- 0, M~ = 0 at X = 0, L and w = 0, My = 0 at Y = 0, B) along all four edges and the geometric 
imperfection and forcing function are, 

[w(x, y, t), Wo(X, y),q(x, y, t)] = [w(t), #, q(t)] sin (Mltx) sin (nny), (14) 

where # is the imperfection amplitude normalised, with respect to the total thickness of the laminated plate, M 
= raB/L, L is the length of  the plate and ra and n are the number of  half-waves in the x and y directions, respectively. 
Substituting the vibration mode and the imperfection into the nonlinear compatibility equation, the stress function 
which satisfies this nonlinear differential equation exactly is, 

f ( x ,  y, t) = [w(t) 2 + 2#w(t)] [CoW(t) cos (M1tx) cos (tory) + cl cos (2M1rx) 

+ c a cos (2tory) + (elx2/2) + (e2y2/2)], (15) 

where 
C o = - - C b , ( M  , n) /Ca,(M, n) 

cl = n2 /( 32M2a~2) (16) 

c 2 = M2/(32n2a~l)  

and the functions Ca,(P,  Q) and Cb,(P , Q) are defined to be 

Ca, (P, Q) = (2b~6 - b~l)( - paQ) + (2b~6 - b~2)(PQ a) 
(17) 

Cb*(P, Q) = a*2P'* + (2a'2 + a*6)e2Q 2 + a*lQ 4. 

Furthermore, it can be seen by inspection that there is no in-plane shear along all four edges (f.x~ = 0). If each of  the 
four edges is permitted to move in the direction perpendicular to the edge (that is, in-plane movable), one obtains, 

et = e2 = 0. (18) 

Since the mixed formulation is used, the in-plane displacement boundary conditions can only be satisfied on the 
average. Before one considers the in-plane immovable boundary conditions, it is desirable to write down the stress 
function-displacements relations in the form (U and V are the in-plane displacements in the x and y directions, 
respectively). 

f.yy = al t  [ux + ½(w,~ + 2w0. x w,x)] + a l2 [v,~ + ½(w, 2 + 2Wo. yw,y)] - 2bl 6 w,xy 
(19) 

f,x~ = a2~ [u,~ + ½(w, 2 + 2wo. ~w,~)] + a22 [v,y + ½(w,~ + 2Wo. yw,y)] - 2b26w,~y, 

where (ajj and b 0 are not to be confused with a~ and b~;) 

(u, v) = (B/h2)(U, V), (a,j, b,;) = [Aij/(Eh), Bi j (Eh2)] .  (20) 

Thus, for a rectangular plate with four in-plane immovable edges, the quantities u,~ and v,~ should not contain 
constant terms (that is, terms which are independent of the x and y coordinates) so that one obtains, 

e I = (a21M 2 + a22n2)(Tt2/8) 

e2 = (al 1 M 2 + at 2 n 2 ) ( ~ 2 / 8 )  • (21) 

Substituting w (x, y, t), w o (x, y) and f (x ,  y, t) into the nonlinear dynamic equilibrium equation for angle-ply plates, 
and performing the Gelerkin procedure (that is, multiplying both sides by sin (MTtx) sin (nny) and then integrating 
over the plate area), one obtains, 

w(t),. + {Ca. ( M, n)+ [ C b. ( M,  n)2 /C a • ( M, n) ] } w(t) - q(t) 
(22) 

= [w(t) 3 + 3Vw(t) 2 + 2/z2w(t)] ( -  eo), 

where 

C d,(P, Q) = d~t P'*+ 2(d'2 + 2d~6)p2Q 2 + d~2Q 4 (23) 

e0 = [(M2e2 + n2et) /n 2] + (2M2n2)(cl +c2). 

Thus, the above Duffing-type nonlinear ordinary differential equation in time can be written in standard form 
(Hui [ 18-20] ) 

w(t), u + k w(t) + (eka2)w(t) 2 + (ek)w(t) 3 = q(t), (24) 
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where 

k = Ca , (M,  n) + [Cb°(M, n)2/Ca°(M, n)] + 2~Zeo (25) 

eka2 = 3/~eo, ek = Co. 

It should be noted that the linear vibration frequency k½ is independent of  the sign of  the imperfection amplitude. In 
the special case of  a perfect angle-ply plate ~ = 0), the in-plane boundary conditions (which enters the problem via 
the constant eo) have no effect on the linear vibration frequency. 

Using Linstedt's perturbation technique [19, 30], the nonlinear frequency is related to the vibration amplitude in 
the case of  free vibration (q(t) = 0). 

o~(nonlinear)/tn(linear) = 1 + rA 2 + . . . .  (26a) 

where 

r = (3e/8) - (5a22e2/12) = (3e/8) [1 - (lOa~e/9)]. (26b) 

Thus, at least for sufficiently small vibration amplitude, the nonlinear vibration problem is classifed as 'hard spring' 
for r > 0 and 'soft spring' for r < 0. A larger value of  the magnitude of r  indicates (i) a more pronounced hard-spring 
behavior if r is positive or (ii) a more pronounced soft-spring behavior if r is negative. 

4. C L A M P E D  I M P E R F E C T  A N G L E - P L Y  P L A T E S  

As the objective of  the present paper is to investigate the influence of geometric imperfections and in-plane 
boundary conditions on the linear and nonlinear vibration behavior in a relatively straightforward manner, it is felt 
that the major trends can be obtained from a one-mode approximate analysis. The vibration mode, the geometric 
imperfection and the forcing function which satisfy the clamped boundary conditions are [14], 

[w(x, y, t), Wo(X , y), q(x,  y, t)] = ¼[w(t), #, q(t)][1 -cos(EMnx)][1  -cos(Enny)] ,  (27) 

where # is the imperfection amplitude normalised, with respect to the total laminated plate thickness. The stress 
function which satisfies the nonlinear compatibility equation exactly for a clamped angle-ply plate is, 

f (x, y, t) = kow(t  ) sin (2Mnx)  sin (2nny) 

+ [W(t) 2 + 2gW(t)] {k 1 COS (2Mnx) + k 2 cos (2nny) + k 3 cos (4Mnx) + k 4 COS (4nny) 
(28a) 

+ k5 cos (2Mnx) cos (2nrty) + k 6 cos (2Mnx)  cos (4nny) 

+ k7 cos (4Mnx) cos (2tory) + (e3x2/2) + (e4y2/2)}, 

where 

ko = Cb. (2M,  2n) / [ -4Ca, (2M,  2n)] 

k I = n2/(32MZa*2), k 2 = M2/(32n2a*l )]  

k3 = -n2 / [ (16) (32M2a '~z ) ] ,  ka = -M2 / [ (16 ) (32n2a*~) ]  (28b) 

k 5 = - M 2n 2 /C a , (2 M ,  2n),k 6 = MZn2/[2Ca°(2M, 4n)] 

k7 = M2n2/[2Ca*(4M, 2n)]. 

Substituting w(x, y, t), w 0 (x, y) and f ( x ,  y, t) into the nonlinear dynamic equilibrium equation for angle-ply plates 
and then performing the Galerkin procedure (multiplying both sides by [ 1 -  cos (2mnx)] • [l - c o s  (2nny)] and 
integrating over the plate area), one obtains a nonlinear ordinary differential equation in time which can be written in 
standard form (see equation 24) where, 

k = 2/~2R + (4/9) [ - k o Cb* (2M, 2n) + (1/4)Cd, (2M, 2n) + 8 M  4d ~ l + 8n'*d *2 ] (29) 
eka2 = 3/~R, ek = R. 

In the above, the quantity R is defined to be, 

R = [16/9n4)] [4M2n2n%s + (3MZnZe4/4)+ (3n%%3/4)], 
(30) 

where 
ks = ½ { [ k 2 - k 4 - k s  +k6 + (k7/2)] + [k l  - k s - k s  +(k6/2)+(kT/2)] + ( k s - k 6 - k 7 ) } .  

Furthermore, the constants ea and e4 depend on the in-plane boundary conditions. For all four edges in-plane 
immovable, one obtains, 

e3 = (3rt2/32)(a2t Ms + a22n2) (31) 
e,, = (3rt2/32)(al i M2 + a12n2), 

while e3 = e4 = 0 for all four edges in-plane movable. 

5. C L A M P E D  I M P E R F E C T  C R O S S - P L Y  P L A T E S  

In a similar manner, the vibration mode, the geometric imperfection and the forcing function for clamped cross- 
ply plates are chosen to be [14], 

[w(x, y, t), w0 (x, y), q(x, y, t)] = [w(t), #, q(t)]¼[1 - cos (2M~tx)] [1 - cos (2n~y)]. (32) 
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The stress funcuon which satisfies the nonlinear compatibility equation exactly is, 

f i  x,  y, t) = row(t) cos (2Mltx) cos (2mxy) + rgw(t) cos (2MTtx) + rgw(t  ) COS (2mty) 

+ I-w(t) 2 + 2/lw(t)] {r I cos (2Mnx) + r 2 cos (2nny) + ra cos (4Mnx) + r4 cos (4nny) 

+ r 5 cos ( 2 M xx )  cos (2mty) + r 6 cos (2Mnx)  cos (4nny) 

+ r7 cos (4Mnx)  cos (2nny) + (esx2/2)  + (e6y2/2)}, 

where 

(33) 

r o = C# . (2M,  2n)/[4Ca*(2M, 2n)] 
= * * * * ( 3 4 )  r a -b21/(4a22), r9 = - b t 2 / ( 4 a l t )  

C a . ( P  , Q) = b*, I ~ + (b*l + b*2 - 2b*6)P2Q 2 + b*2Q 4 

and rl = kl,  r2  = k 2  . . . . .  r7 = k7 provided that a~ coefficients are those appropriate for cross-ply plates. 
Substituting w(x,  y, t), wo ix, y) and q (x, y, t) into the nonlinear dynamic equilibrium equation for cross-ply plates 

and carrying out the Galerkin procedure, with respect to [ 1 - c o s  (2Mnx)]"  I-1-cos(2nny)'l ,  one obtains a 
nonlinear ordinary differential equation in time in the form, 

w(t),.  + y lw(t )  + [w(t) z + 2#w(t)] fll + I-w(t) z + #w(t)] rio (35) 
+ [w(t) 3 + 3#w(t) 2 + 2#2w(t)] R ~- q(t), 

where (the constants ~ l , /~ ,  r~0 and R are independent of  the imperfection amplitude ~), 

~'1 = (16/9)1- - 8M4b*l  rs - 8n4bT2r9 + (ro/4)C#*(2M, 2n) + (1 /16)Ca.(2M,  2n) 

+ 2d* l M'* + 2d*2n 4] 

fll = (16/9)1-- 8M'*b'~l rl - 8n4b~'2 r2 + ( r , /4 )C# , (2M,  2n)] (36) 

rio = (16M2n2/9)(2)(ro - r9 - rg) 
R = - 4M2n2n4ka - (3MZn2e6/4) - (3n27t2es/4). 

In the above, the constant ka is defined in equation (30). Further, for all four edges in-plane immovable, 

es = e3, e6 = e~ (37) 

and e5 = e6 = 0 for all four edges in-plane movable. Re-arranging terms, the above differential equation can be 
written in the standard Dulling-type equation (equation 24) where, 

k = ~1 + 2#fll + #rio + 21 azR (38) 
eka2 = fll +r io  +31 aR, ek = R. 

6. D I S C U S S I O N  O F  R E S U L T S  

The material parameters for the anti-symmetric angle-ply laminated plates are chosen to be those appropriate for 
graphite-epoxy composites with 1-23-24], 

E I / E  2 = 40, GI2/E  2 : 0.5, VII = 0.25, V21 = vI2(E2/EI) .  (39) 

The numerical results for all the curves are presented only for the vibration wave number M = m B / L  = 1 alJd 
n = 1 and it should be noted that the effects of aspect ratio L I B  and m can be studied via a single parameter M. The 
frequencies presented are normalised with respect to 09(0 =/a = 0, s.s.); that is, the frequency of  simply supported, 
perfect angle-ply plates with zero fibre angle. It should be noted that, 

~(Chia) = coB2[p/(E2h3)] ½ = n2k ½ (40) 

f~(Chia, at 0 =/z  = 0, s.s.) = 1.9053n 2 = 18.805. 

Figure l(a) shows a graph of normalised frequency co/co (0 = # = 0, s.s.) versus imperfection amplitude/~ for 
simply supported anti-symmetric angle-ply plates with all edges in-plane movable (el = e2 = 0). The fibre angles 
under consideration are 0 °, 15 °, 30 °, 45 ° and the effects of bending-stretching coupling can be seen by comparing the 
orthotropic plates (infinite layers) with the two-layer plates. Clearly, the presence of geometric imperfections of the 
order of  the total thickness of the laminated plate may significantly raise the linear vibration frequencies. Further, the 
increases in frequencies are much more pronounced for the 0 ° and 15 ° plates than for the 30 ° and 45 ° plates. The 
corresponding non-linearity indicator r versus the imperfection amplitude/~ curves are plotted in Fig. l(b). For 
sufficiently small values of the imperfection amplitude, the angle-ply plates display hard-spring (r positive) behavior 
while for larger value of/z, the plates exhibit soft-spring (r negative) behavior. The magnitudes of  the nonlinearity 
indicator (larger magnitude means more pronounced hard-spring or soft-spring behavior)are much larger for the 0 ° 
and 15 ° plates than for the 30 ° and 45 ° plates, 

Similarly, the normalised frequency versus imperfection amplitude curve for simply supported angle-ply plates 
with all edges in-plane immovable are presented in Fig. 2(a). It is important to note that the in-plane boundary 
conditions have no effect on the linear frequencies. Here, the increases in frequencies are more pronounced than 
those for the plates with all edges movable. The corresponding curves of  nonlinearity indicator r versus imperfection 
amplitude are shown in Fig. 2(b). It can be seen that the magnitude of r  (note the change in scale in the graph) is much 
larger than those for the in-plane movable edges. Finally, the transitional value of the imperfection amplitude at 
which r changes sign/h occurs at #, < 0.4. These values are much smaller than those for the in-plane movable plates. 

Figure 3(a) shows a graph of  the normalised frequency co/coC0 =/~ = 0, s.s.) versus the imperfection amplitude for 
clamped angle-ply plates with all edges in-plane movable (e3 = e4 = 0). Again, the 0 ° and 15 ° plate frequencies 
increase with imperfection amplitude much faster than the 30 ° and 45 ° plates. Of  interest is that for the orthotropic 
plates (infinite layers), all the curves pass through fl(Chia) = 4.3152n 2 = 42.589. The corresponding nonlinearity 
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FIG. l(a). Normalised linear frequency vs imperfection amplitude for simply supported angle-ply 
rectangular plates with all edges in-plane movable (el = e2 = 0). 
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FIG. 1 (b). Nonlinearity indicator vs imperfection amplitude for simply angle-ply rectangular plates 
with all edges in-plane movable (el = e2 = 0). 

indicator r versus imperfection amplitude curves are depicted in Fig. 3(b). In general, the magnitudes of r for the 0" 
and 15 ° plates are larger than those for the 30 ° and 45 ° plates. Figure 4(a) shows a graph of the normalised frequency 
versus imperfection amplitude for clamped angle-ply plates with all edges in-plane immovable. In general, the 
frequencies of the two-layer plates increase with imperfection amplitude faster than those for the orthotropic plates. 
Finally, the corresponding nonlinearity indicator versus imperfection amplitude curves are presented in Fig. 4(b). 

Three types of materials are selected for cross-ply laminated plates [15], They are graphite-epoxy (El/E2 = 40.0, 
GIz /E 2 =0 .5  and vx2 = 0.25), glass-epoxy (E1/E z = 3.0, GIa/E2 = 0.5 and vt2 = 0.25) and boron-epoxy 
(Et/E2 = I0.0, G12/E2 = 1/3 and v~2 = 0.22). Figure 5(a) shows a graph of the linear vibration frequency k½ ---- Q 
(Chia)/n 2 = oJ/w, versus positive values of the imperfection amplitude for clamped graphite--epoxy cross-ply plates 
(M = n = 1). A very small increase in the vibration frequency for two-layer plates (but not infinite-layer) is detected 
for the corresponding negative values of the imperfection amplitude (too small to be plotted). Thus, the linear 



Soft-spring nonlinear vibrations of rectangular plates 403 

~l~(e =u=O, s.s.) /' / ' /  

2.5 15 ,?' 

20 

1"5 a, //," 

~ ~ ~ M ~ E  IM~MOVABLE 
J / / / O  ,~,~ --INFINITE 

I'0 ~ // ...... TWO LAYERS 

O *0"5 *1.O *1'.5 }J 

FIG. 2(a). Normalised linear frequency vs imperfection amplitude for simply angle-ply rectangular 
plates with all edges in-plane immovable. 
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FIG. 2(b). Nonlinearity indicator vs imperfection amplitude for simply angle-ply rectangular plates 
with all edges in-plane immovable. 

frequency (and the nonlinearity indicator which will be shown later) has a slight dependence on the sign of the 
imperfection amplitude. Again, the frequencies of the plates with all edges in-plane immovable increase more with 
imperfection amplitude than those for the plates with all edges in-plane movable. The corresponding curves of 
nonlinearity indicator versus imperfection amplitude are shown in Fig. 5(b) for clamped graphite-epoxy cross-ply 
plates. It should be cautioned that for non-square (M ÷ 1) rectangular cross-ply plates (not treated here), the 
problem may depend on the sign of the imperfection amplitude since a sign change corresponds to a different 
structure. 

Finally, the linear frequency k½ versus positive values of the imperfection amplitude curves for clamped 
glass-epoxy and clamped boron-epoxy cross-ply plates are presented in Fig. 6(a) with M = n = 1. The increases in 
linear frequencies with imperfection amplitude for these plates are less pronounced than those for graphite-epoxy 
cross-ply plates. The corresponding nonlinearity indicator r versus positive values of imperfection amplitude curves 
for clamped glass-epoxy and clamped boron-epoxy cross-ply plates are shown in Fig. 6(b). In general, the 
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FIG. 3(a). Normalised linear frequency vs imperfection amplitude for clamped angle-ply rectangular 
plates with all edges in-plane movable (e3 = e4 = 0). 
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FIG. 3(b). Nonlinearity indicator vs imperfection amplitude for clamped angle-ply rectangular plates 
with all edges in-plane movable (e 3 = e4 = 0). 

magnitudes of r are smaller than those for the graphite-epoxy cross-ply plates. Again, very small increases in 
frequency and slightly more negative values of r are found for the corresponding negative values of the imperfection 
amplitude. 

As a check on the analysis, the linear frquencies for angle- and cross-ply plates in the present one-mode 
approximate analysis are found to be slightly (approx. 1%) higher than those obtained from a four-mode 
analysis i-14]. These small discrepancies (on the high side) are expected since the nonlinear compatibility equation is 
satisfied exactly in the present analysis, thus, the computed frequencies are upper-bound frequencies. 
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FIG. 4(a). Normalised linear frequency vs imperfection amplitude for clamped angle-ply rectangular 
plates with all edges in-plane immovable. 
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FIG. 4(b). Nonlinearity indicator vs imperfection amplitude for clamped angle-ply rectangular plates 
with all edges in-plane immovable. 

7. C O N C L U D I N G  REMARKS 

The effects of geometric imperfections and in-plane boundary conditions on the linear and 
large amplitude vibration behavior of laminated rectangular plates have been examined. The 
equal-thickness antisymmetrically laminated plates being considered are graphite-epoxy 
angle-ply plates (all edges simply supported or clamped) and graphite--epoxy, glass-epoxy 
and boron-epoxy cross-ply plates (all edges clamped). It was found that the presence of 
unavoidable geometric imperfections of the order of a fraction of the total laminated plate 
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F i e .  5 ( a ) .  Linear frequency k½ vs imperfection amplitude for clamped graphite--epoxy cross-ply 
rectangular plates. 
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F I G .  5 ( b ) .  Nonlinearity indicator vs imperfection amplitude for clamped graphite-epoxy cross-ply 
rectangular plates. 

thickness may significantly raise the linear vibration frequencies. Further, they may change 
the inherent hard-spring non-linear vibration character of these plates to soft-spring 
behavior. It appears that this paper is the first in the open literature to deal with the effects of 
geometric imperfections on large amplitude vibrations of laminated plates, incorporating the 
possibility of bending-stretching couplings. Since the influence of geometric imperfections 
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FIG. 6(a). Linear frequency k½ vs imperfection amplitude for clamped glass-epoxy and boron-epoxy 
cross-ply rectangular plates. 

FIG. 6(b). Nonlinearity 
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indicator vs imperfection amplitude for clamped glass-epoxy and 
boron-epoxy cross-ply rectangular plates. 

on both the linear and nonlinear vibrations of  isotropic homogeneous  structures is found to 
be highly significant, one would tend to be reluctant to use composite structures since it is not 
clear that these imperfections will produce the same trends and if so, to what extent. The 
present results show that the effects of  imperfections on vibrations o f  laminated structures 
generally produce the same trends but to a smaller extent for a wide variety of  fiber 
orientations, stacking sequence and in-plane and out-of-plane boundary conditions. 
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